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Nonstandard Methods in Quantum Field Theory I:
A Hyperfinite Formalism of Scalar Fields
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Anonstandard approach to axiomatic quantum field theory is given. Nonstandard axioms
for a Hermitian scalar field is proposed, where the field operators act on a hyperfinite-
dimensional Hilbert space. The axioms are shown to be equivalent toahding=
Wightman axioms. An example of a model of the nonstandard axioms is examined.
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1. INTRODUCTION

Axiomatic quantum field theory began with th@@ing—Wightman axioms
(Garding and Wightman, 1964; Reed and Simon, 1975), which are written in terms
of field operators in a Hilbert space. Thex@ing—Wightman axioms are reformu-
lated as the Wightman axioms (Streater and Wightman, 1964) in terms of tempered
distributions, and then Euclideanized by Osterwalder and Schrader (1973). The
aim of this paper is to give another reformulation of thar@fg—Wightman ax-
ioms in terms of the operators orhgperfinite-dimensional linear spacehich
is constructed imonstandard analysjoriginated by Robinson (1966). This re-
formulation uses our recent mathematical results on nonstandard linear operators
(Yamashita and Ozawa, 2001).

Kelemen and Robinson (1972), who suggested a nonstandard method of con-
structing thei : ¢3(x) : model, claimed the need of the nonstandard axioms of
quantum field theory. However, the subject has not been studied after Kelemen
and Robinson, while several authors (e.g., Albevetial, 1986; Gudder, 1994;
Nakamura, 1991, 1997; Ojima and Ozawa, 1993; Ozawa, 1997; Yamashita, 1998;
Yamashita and Ozawa, 2000) have attempted to apply nonstandard analysis to
quantum physics.
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We first give some mathematical preliminary notions;stemdard parof an
internal bounded operator and thenstandard representatiors the canonical
commutation relation (CCR). In this paper, we shall treat the CCR as relations sat-
isfied by unbounded operators, called creation and annihilation operators, so that
our treatment can be adjusted to thar@hg—Wightman axioms for scalar fields
in which unbounded operators are employed. Nonstandard representations of the
CCR in terms of bounded operators (the CCR of the Weyl form) were examined
by Yamashita and Ozawa (2000).

In Section 5, the nonstandard axioms for neutral scalar fields are given, and
proven to be equivalent to thea@fing—Wightman axioms. Then, we give an ex-
ample of a free field satisfying the axioms, using the nonstandard representations
of the CCR mentioned above.

Other quantum fields, especially gauge fields, will be studied in the subsequent
papers.

2. NONSTANDARD ANALYSIS

We follow the superstructure approach to nonstandard analysis (Chang and
Keisler, 1990; Hurd and Loeb, 1985). Their basic definitions were reviewed in
Yamashita and Ozawa (2000).

Instead ofx, we letx denote the ordinary star-map in nonstandard analysis.
For a setS, let?S= {*s | s € S}. We identify*z with z for all ze C, i.e., we
assume the base set of the standard superstructure cabt&@o$ S = Sif Sisa
subsetoC,e.g.’C=C,°R=R,°Z = Z,and’N = N.LetR", *Ro, *R{, *RL,
and*N,, denote the set of positive real numbers, infinitesimatal numbers,
positive infinitesimak-real numbers, positive infinitereal numbers and infinite
*-natural numbers respectively. It is shown thidt, = *N\N. We writex > oo
if x e RL, andx < ooif x e fin*RT* =*RT\*RL. Ifr € *Rand|r| < oo, °r (or
st(r)) denotes the standard partrofif r > oo, we write°r = oc.

Let x, y € *R*. We sayx is of theorder of y, x < vy, iff X/y < co and
y/X < oo. We writex < y if x/y = 0.

For a hyperfinite £-finite) setF, let |F| denote the internal cardinal number
of F (|[F| € *N).

Let (X, O) be a topological space, aidd, the system of open neighborhood

of x € X. Themonadof x € X is the subset mas(x) = [*O(O € Ox) of *X.
The set ofnear standardpoints is the set nsK) = [ mono(x)(x € X). It is
shown that K, O) is Hausdorff iffx # y = monn(x) N monx(y) = ¢. Thus for
the Hausdorff spaceX, ©), we can define the equivalence relati€non ns*X
bya £ biff for somex € X a e mony(x) andb € mony(x).

Let (X, ||-]) be an internal normed linear space. Define the relatioon
*X by x &~ y iff |[x —y| =~ 0. Theprincipal galaxyof *X is the set fin(X) =
{xe*X | |IX|| < oo}. Let X denote the equivalence classes of *fi) under
the equivalence relatior=. For x € fin(X), let X be the equivalence class
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K ={y e*X|x~y} ClearlyX = {X | x € fin(*X)}. Define the nornj-|| on X

by |1X|| = °|Ix|| (well-defined). The paiDA(, [I-]1) turns out to be a Banach space,
called thestandardizatiorof (X, |-||), in ax-saturated model with > Ry. In a
similar way, the standardization is defined for an internal pre-Hilbert spgdg)(,
and it becomes a Hilbert space. .

For a (standard) normed linear spae (-||), we abbreviateX to X. In this
case, the Banach spac)%,(l|-||) is called thenonstandard hulbf (X, ||-]]).

Let X be an internal normed linear space, &g X. DefineS< X by

= {¢ € X|[faranye € R*, thereis) € Ssuchthaflé — n|| < €}.If S C fin(X),
wefindS=US= (¢ € X|£ € §}.Inthis paper, an external seiC finX is called
closedif S= US for some closed s&¥ C X.

Let H be an internal Hilbert space, aiid: H — H be an internal bounded
operator such that the bound || is finite (such operator is calle®-bounded.
Define the bounded operatbr: 7 — H, called thestandard parof T, by T% =
T x (well-defined).

In the following, we assume the polysaturation (Stroyan and Luxemburg,
1976), i.e., our nonstandard modelissaturated with card() < « whereX’ is
the superstructure that is the domain of the map

3. STANDARDIZATIONS OF INTERNAL OPERATORS

This section outlines our recent mathematical results (Yamashita and Ozawa,
2001) on standardizing internal linear operators.

In nonstandard analysistandardizationsf internal (or nonstandard) objects
have been studied for constructing standard mathematical objects; e.g., an internal
measure space is converted into a measure space in the standard sense, called Loeb
space (Albeveri@t al., 1986). The standardization of an internal Hilbert spkce
is the nonstandard hul{ of H (Moore, 1976). The standardization of an internal
operatorA onH with finite norm is the standard pa@tof A

On the other hand, in the case where the nornAa$ not finite, it is not
straightforward to give an adequate definition of the standard pdxt Afbeverio
et al.(1986) definedA only when is hyperfinite-dimensional real Hilbert space
and A is an internal positive symmetric operatoran

In this section, we give a definition ok for any internal complex Hilbert
spaceH and for any internal bounded operatAron H, as well as the basic
properties onA so defined, which suggests the adequacy of the definition. For
further information, we refer to Yamashita and Ozawa (2001).

The following proposition enables us to give the first definition of the standard
part of A.

Proposition 3.1. There exists the unique (possibly unbounded) self-adjoint op-
erator S onkC satisfying

(S+i)t=[(A+i)Y I K. 1)
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Definition 3.1. Under the condition of Proposition 3.1, define the self-adjoint
operator st(A) on K by (st(A) +i) "t =[(A+i) " K.

The operator gt A) is called thestandard pariof A. We see that g(A) = A
whenA is S-bounded.

Definition 3.2. Let A be an internal bounded operator Af an internal Hilbert
space. Define fi§) € H by

fin(A) = {& e finH | At e finH). @)

Definition 3.3. Let A be an internal bounded self-adjoint operator7gnLet
K be the closure of the subspace [~ = {£ | & € fin(A)} of H. Define the
self-adjoint operator s{A) on K by

it — giA I K teR. 3)

We see tha{t@a ! I@}teR is a one-parameter unitary group, siffces invariant
underet” for all t € R. We also see that it is strongly continuous, as follows. Let
g e fin(A). Then, we have(*d/df)e" ¢|| = |[ie" Ag|| < oo, where*d/dt is the
internal differentiation. This implies thakAZ is continuous with respect toc R.
Thus,eA is strongly continuous on i) ~1+. Hence by Stone’s theorem,Eh)
is uniquely defined. If Ais S-bounded,&8) coincides withA defined in Section 2.

Let E(-) be an internal projection-valued measureRni.e., for each internal
Borel setQ2 C *R, E(2) is an orthogonal projection oK such that

1. E(¢) =0,E(R) =

2. If Q@ =2, @n with €, N Q2 = ¢ if N # m, thenE(Q) = s-limy_oo
Y nea E(20)

3. E(Q)E(Q2) = E(Q1N Q).

Forr € *R, let H, = Rng(E(-r,r)), the range ofE((—r,r)). Let D(E) =
Urer+ Hr NfinH. D(E) is called thestandardization domaif E(-). Clearly,

— J_J_ ~
D(E) = (LJreRJr HT)LL' -
Fora € R, define the orthogonal projectidiy(—oo, a] by

Es(—00, @] = SUBE(—K,a+ €] D(E)*" | K, e € RT} (4)
= slim é(—n, a+ ﬂ I D(E)*. (5)
Then we see

s-lim Eg(—00,a] =0 (6)
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S‘iign Iést(_oov ate]= Iést(_ooa al (7
€

a<b= Eq(—00,a] < Eg(—00,b]. (8)
Hence,E; (—o0, -] defines a projection-valued measureRin

Definition 3.4. For any internal bounded self-adjoint operafgefine the self-
adjoint operator g{A) on D(E)*+ by

Sta(A) = / AES(). ©)

Proposition 3.2. Let A be an internal bounded self-adjoint operator, and)E
the internal projection-valued measure associated with the spectral decomposition
of A. Then

D(E)*: = fin(A) . (10)

Theorem 3.3. Definition 3.1, 3.3, and 3.4 are equivalent, ish(A) = st(A) =
st3(A).

In Section 2,A is defined only wher\ is an internal S-bounded self-adjoint
operator. Now we can extend the definition so as to include the case Wlisre
an internal bounded self-adjoint operator that is not S-boundee: sti(A) =
sk(A) = st(A).

Definition 3.5. Let Abe aninternal linear operator on an internal Hilbert sgdce
Let D be an (external) subspace offin A is standardizablen D if D c fin(A)
and if for anyx, y € D, x &~ y implies Ax ~ Ay. In this case, define the operator
Ap with domainD = {X | x € D}, called thestandard pariof A on D, by

Apk = AX, X e D. (11)
Clearly, A is standardizable ob if and only if D C fin(A), and if A ~ 0
forall¢ € D with& ~ 0.

Lemma 3.4. An internal bounded operator A is standardizablefgA* A).

Corollary 3.5. If D C finH is invariant under A and A A is standardizable
on D.

Theorem 3.6. Let A be an internal self-adjoint operator dx, and K-) the
projector-valued spectral measure of A. Then,

A= ApE) = Avina) (12)
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For a usual (resp. internal) closed operatptet o (A) andop(A) denote the
usual (resp. internal) spectrum and the usual (resp. internal) point spectiym of
respectively.

Theorem 3.7. For an internal self-adjoint operator A,

o (A) = ap(A) = stfo(A) N fin *RY. (13)

Definition 3.6. Let A be an internal bounded self-adjoint operator Hh
Let H be a subspace of fii. A real numberk is aapproximate eigenvaluef
A relative to H if for any internal setlS > H, there is¢ € Swith ||&|| = 1 such
that (A — A)§ ~ 0.

We denote byap A; H) the set of approximate eigenvectorsAvfelative
toH.

Let st the standardizing operation f i.e., st€) = £. We easily seH C
sti(H).

Theorem 3.8. A € oap(A; H) if and only if there exists a sequen@elien C H
with ||& || = 1 such thatim;_ . °[[(A — A& || = O.

Corollary3.9.  Let Abe aninternal bounded self-adjoint operator. LetHinH
be a subspace such thblt is closed and H= srl(H) Denote byA(H) the self-

adjoint operator orf " defined byA(H) = A | H ndom(A). Then,
o (A(H)) = oap A; H). (14)
Definition 3.7. Let A andB be usual possibly unbounded self-adjoint operators

on a (usual) Hilbert spact. The operatorsA and B commutef € and e'®
commute for each real

It is known thatA and B commute iff any spectral projection é commute
with any spectral projection dB.

Definition 3.8. Let AandB be internal bounded self-adjoint operatorsforand
H a subspace of fiH. The operatorg\ andB areapproximately commuten H if

e|sA e'th ~ eitB eitA§ (15)

forallé € H ands, t € R.

Definition 3.9. Let A4, ..., A, (n € N) be internal bounded self-adjoint opera-
tors, andH a subspace of fii. Defineoap(Ag, ..., An; H) € R to be the set
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of A € R such that for any internal s&> H, there is¢ € Ssuch that|&|| =1
andAs = A& (i =1,..., n). Each element ofap( A1, - . ., An; H) is called an
approximate joint eigenvaluef A, ..., AyonH.

Theorem 3.10. Let Ay, ..., Ay (n € N) be internal bounded self-adjoint oper-
ators on’H, approxmately commutlng on K finH. Suppose that H is S- closed
and H is invariant under eachA. Then, the self-adjoint operatord, | H
dom(Ay), ..., A, H ndom(A,) commute, an@ap(Ag, - . ., An; H) commdes
with their joint spectrum.

4. NONSTANDARD REPRESENTATIONS OF THE CCR

Definition 4.1. Let H be an internal Hilbert space, afd be an internal inner
product space. Leit(-) be aninternal map froik to the internal bounded operators
on H. Let Dy, and D be subspaces of fi and finC respectively. The triple
(a(), Dy, Dg) is called a (nonstandard) representation of the CCR if

@iy f— a(f)*islinear.
(i) [a(f), a(9)']s ~ (f, 9)¢, [a(f),a(9)] =0 f,g € Dk, & € Dy
(i) Dy is invariant under(f) anda(f)* forall f € Dy.

Definition 4.2. Let (a(-), D3, Dx) be a representation of the CCR such that if
f,g e D¢ and| f — g|| = 0 thena(f)¢ ~ a(g)é, a(f)*¢ ~ a(g)*¢ for all £
Dx. The representatlora() Dy, Dx) is calledS-continuousDefine the maps
a() andaf(.) from Dr = {f | f € Dx} to the operators on the inner product
spaceDy, = {£ | £ € Dy} by

a(f)é = @(fe)~,  al(fi =(a(f")e)~, £eDy, feDe.  (16)

We see that these are well-defined by the following: Condition (iii) implies
Dy Cfin(a(f)*a(f)) Nfin(a(f)a(f)*) for all f € Dx. Thus by Lemma 3.4,
a(f) anda(f)* are standardizable ob4, i.e., if £, € Dy, and& = ¢ then
a(f)e ~ a(f); anda(f)*& ~ a(f)*¢. The operator§(-) andaf(-) give a stan-
dard representation of the CCR:

[acf), a@ =0, [acf),a@=(f,a="(f 9 (17)

Consider the case wher€ = *C, Dx = fin*C and H is an hyperfinite-
dimensional internal Hilbert space.

Example I(number truncation). Lel be a (standard) separable Hilbert space.
Let A and AT be the annihilation and the creation operatorsHbnlet {g }ien
denote a complete orthonormal systentdgfandD c H be spanned bjge };. The
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operatorsA and Af are defined by

Aey=0, Ag=+ie_i, Alg=+i+1e,. (18)
Let {¢i}ic:n = *({&}ien) Wherey; =*g for i € N, and’H be the internal
Hilbert space spanned by, . .., ¥, (v € *Ny). Define the internal operatoss
anda* on’H by projecting the operator& and A*:
ayo=0, ayi=+ie_1, i=1,...,v, (19)
a*yi =il +1l64q, i=1,...,i —1, (20)
a*y, =0. (21)

The operatora anda* are called the@umber-truncated annihilation operator
andnumber-truncated creation operator

Let a(z) = zafor ze K =*C. Let Dy =?D and D = fin*C. We see
(a(-), Dy, Dx)is a S-continuous representation of the CCR. fitnmber operator
N satisfying

itN

g —itN

ae™—=gegMa te"R, (22)

and
Né =0 ifandonlyif a& =0 (23)
is given byN = a*a.

Example Zhyperfinite extension). LetH and A be same as Example 1. LEt
be an internal hyperfinite-dimensional linear space Withc F c *H, and the
operatora on F be a hyperfinite extension &. SetD;, = ° D andDx = fin*C.
Definea(:) by a(z) = za (z € fin*C). Then, @(-), Dy, Dx) is an S-continuous
representation of the CCR.

Example 3(spin matrices). Let);, J,, and J; be the hermitian generators of
v-dimensional internal irreducible representation of su(2) with the representation
spaceH, satisfying

[J J] = ieximIm. (24)

Leta = (J1 + Jp)/+/] with j = (v — 1)/2, anda(z) = zafor z€ K = *C.
Let Q e H satisfy ||| =1 and a2 = 0. Let Dy; be spanned by and
a;Q2 (k € N), andDg = fin*C. Then, &(-), Dy, D) is a S-continuous represen-
tation of the CCR. The number operatdisatisfying (22) and (23) is given by =
Jz + j. Note thatN # a*ain this example. Instead we hate= (j/2)[a, a*] + |
anda*a = N(1— N/v).

Now we will consider a case whef@is infinite-dimensional.
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Example 4(number truncation for the case of infinite degree of freedom). Let
J be a hyperfinite set withJ| € *N.. Let I = *C’ with the inner product
(f,g) =€ iy F()a(i) (f,ge*Cl), wheree € *R is a fixed constant. Lea

be the number-truncated annihilation operator’éfn Let H = ®je3 Ho and

a8 = ®jei &j,Wherea;; = aifi = j, anda; = 1 otherwise. Forf *CJ, define
a(f) by

a(f)=+e) fla. (25)
ied

Let A be the (external)-algebra generated %, a(f) | f e fin*C’}, and set
Q = ®jcy Yo, Dy = AQ andDy = fin*C?’. Then, we find thatd(-), D7, Dx) is
arepresentation of the CCR. Condition (i) of Definition 4.1 is clear. Condition (ii) is
shown as follows. Note thaaf, aj]a’ - - - &' @ = §jj& - - - &" & (n € N). Hence,
we have e.g.g, &’ a’ Q = (di,i, + 8i,i,&7)S2. Thus, every vector irDy = AQ
is an internal linear combination of the vectors of the faan - - a7 Q. Thus,
[a, 2]]¢ = 8; & for all € € Dy, and henced(f), a(g)"]s = ¢ 3, ;) Fa()
&, a*]g =5 T([)9()é = (f, g)&. Therefore (ii) is satisfied. Condition (iii)
is shown as follows. CIearIyDH is invariant undetA. Let a(f)* denotea(f)
ora(f)*. By a straightforward calculation, we can chedgk, a( f;)* - - - a(f1)*Q)
(fy,..., f, e fin*CY, n e N) is finite. HenceD;; C finH. Thus (iii) is satisfied.

The representatiora(-), Dy, D) also is S-continuous. In fact, iff || ~
0,| f|l # 0and¢ € Dy, thena(f)fe = || f|la(f/| f|)*& ~ 0, becasud /|| f|
Dy anda(f/| f])*¢ € Dy C fin'H. So we can consider the standardization of the
representation as stated after Definition 4.2: for any veciarthe nonseparable
Hilbert spaceD,g = (*C7)™, a(f) anda’ (f) becomes standard operators defined
on Dy. Let A be the aIgebra generated by, a(f), af(f) | f € Dx}. We see
Dy = AQ, i.e., this representation is cyclic.

5. HYPERFINITE WIGHTMAN AXIOMS

LetS(R') (I e N) denote the space of the functions of rapid decrease with the
%Lsual topology. Sinc&(R') is Hausdorff, we can define the equivalence relation
~ by

fXg ifandonlyif f—g e mons(0) (26)

Definition 5.1. The triple ¢, Q, P) of an internal linear mag from *S(R')

to the internal operators on an internal hyperfinite-dimensional Hilbert space
F, and a unit vectof2 € F, and internal self-adjoint operato® = (P, ...,

P _1), is called a hyperfinite Hermitian scalar field theory if it satisfies the
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following properties:
Let A be the algebra generated dy ¢(f) | f € °S(R")).

(HW1) AQ < finF.
(HW2) If f is real-valued thep(f)i is self-adjoint.
(HW3) If F1, F, e ns'S(R') andF ~ 2 Fo, then

(61, p(F1)&2) ~ (61, p(F2)62) &1, 62 € AQ. (27)
(HW4) For f,, ..., f, e °S(R') and @, A) € P/, the restricted Poincargroup,
(€2, o(f1) - o(a)2) ~ (2, 9(F1ia,4)) - - - ©(Fn(a, 4))2), (28)

where fa 4)(X) = f(A71(x — a)).

(HW5)
(a) AQ is invariant underg-@"P:)~ foralla € R'.
(b) Foranyae R, e @PQ~ Q.
(© @ P) pac(DE ) E = pac(fau)f, & € AQ.
(HW®6) Py, ..., RB_1 approximately commute aAS2, andoapy P; AQ) is a subset
of the closed forward light cone.
(HW?7) If the supports off andg are space-like separated,

[p(f), 0(@)]E ~0 & € AQ, f,geSR). (29)
(HW8) If '@ Pug ~ £ forallae R!, & ~ cQ(c € C).
Let us call HW1-HWS8 thdyperfinite Wightman axioms

Definition 5.2(Garding and Wightman, 1964; Streater and Wightman, 1964).
The quadrupleX{, Q, ¢, U) of a separable Hilbert spa¢é¢, a mapp from S(R')

to the operators ofi, and a strongly continuous representatibof PJI onH,is
called aGarding—Wightman Hermitian scalar field thedfyt satisfies the follow-

ing properties:

(GW1) There exists a dense domd&dg C H satisfying the following (a)—(d):
(@) For eachf e S(R'), domg(f)) € Do, and for all&y, & € Dy, the linear
functional(&1, ¢(-)&2) is a tempered distribution.
(b) If f € S(R") is real-valuedg(f) is symmetric orDy,.
(c) Foreachf € S(R'), Dy is invariant undeg( f).
(d) Q € Do and Dy is algebraically spanned b§2, ¢(f1)---d(fr)2 | f1,
, fn e S(R"), n e NJ.
(GW2)
(a) Forany &, A) € PI, Dy is invariant undeb) (a, A).
(b) Forany &, A) € P!, U(a, A)Q = Q.
(c) Foranyf e S(R')and @, A) € P!,

U, A)¢(FU(a, A) " = ¢(fa,n)- (30)
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(GW3) The joint spectrum of the infinitesimal generat®s ..., P_; of the
subgroup{U(a, 1) | a € R'} is a subset of the closed forward cone.

(GW4) If the supports of andg are space-like separated([f ), ¢(g)] = 0 onDy.

(GWS5) A vector invariant under eath(a, 1) (a € R') is a scalar multiple of2.

We will show the equivalence of thea&ling—Wightman axioms and the
hyperfinite Wightman axioms.

Let (H, ¢, 2, U) be a Grding—Wightman Hermitian scalar field theory. Let
F be an internal hyperfinite-dimensional Hilbert space such’thatt F C *H,
and E the orthogonal projection ontg. Then,¢(:) = E*¢(:) | F is an internal
linear map from*S(R') to the internal operators oR. Let A be the*-algebra
generated byl, (* f) | f € S(R")}. SinceAQ = ? Doby GW1(d), HW1 holds. If
f € S(R") is real-valuedy(* f) is self-adjoint HW2. HW3 follows from GW1(a).
HW4 follows from GW2.

To show HW5, we need the following lemmas:

Lemmab5.1. Letmn,| € N. For any bounded operatorsI.. ., Tr, and posi-
tive reale, any vectors)y, ..., ¥n € Handanyrealt, ..., t, there is an orthog-
onal projection E of finite rank such that

|€ETEy, —e“Ty, < e and Ey, =, (31)
fora=1,...,I,86=1,...,mjandy =1,...,n.

Proof: LetN e N andEy be the projector onto the finite-dimensional subspace
spanned byTfvy,, |[k=0,...,N, =1,...,m, y =1,...,n}. We have

d(j) = 1eENT By, — e Try |
o0 H k o0 H k
(ito EnTEEN) (ita Tp)
= ZT%’_Z m Yyl >0 (N — 00).
k=N+1 k=N+1

Thus, take a sufficiently larghl so that maggﬂ,;,dil’;'])/ < e andletE=En. O

Lemma 5.2. LetH be a Hilbert space, andiT(k € N) internal bounded opera-
tors on*H. There exists a hyperfinite-dimensional internal subspace FitkC
F c *H such that for every k& N, every real t, and every vect§re °H,

eitETk EE ~ eitTké.' (32)

where E is the internal orthogonal projection onto F.

Proof: By the Transfer Principle, Lemma 5.1 is transferred to: “for any
internal bounded operatorE, ..., T, any positive hyperrea¢, any vectors
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Y1, ..., ¥n € *H and any hyperreats, . . ., t;, there is an internal orthogonal pro-
jection P of hyperfinite rank such that (31) holds.” Thus we find that the internal
relation

|€PTPy — Ty < e and Py =y (33)

with the two variablesk, ¢, t, ¢) and P is concurrent (Hurd and Loeb, 1985;
Stroyan and Luxemburg, 1976) dhx °H x R x RT. Thus, by the saturation,
the proof is completed. O

Lemma5.3. Let A, ..., Ay (n € N) be (possibly unbounded) commuting self-
adjoint operators orf{, a Hilbert space. Then, there are internal bounded com-
muting self-adjoint operators B. .., B, on*H such that

M ~dBre, i =1,..,n, (34)
foranyé e Handte R.

Proof: Let P(:) be the internal projection-valued joint-spectral measureRin
associated withAy, ..., A,. Let S be an internal bounded Borel set such that
fin*R" ¢ Sc *R", and seB; = P(9A P(S). SinceP(9*¢ ~ *& foranyé ¢ H,
(34) holds. O

We apply Lemma 5.3 to the self-adjoint operat&ss. .., P,_; on H, and
have internal commuting bounded self-adjoint operaiys .., P, satisfying
ePixe ~ @'Pi*g (i =1,..., 3) foranyt € R and¢ € H. By Lemma 5.2, we can
assumeEPiExg ~ éPi*£ for anyt € R andé € H. SetP; = EP; | K, and we
have

eitPné s it*Pi*é, EeH,i=0,...,| -1 (35)

Thus, HW5(a)—(c) follows from GW2(a)—(c). The commutabilityRy; . . ., P3
and (35) imply that the approximate commutabilityRyf ..., B_; onH. HW6
is shown by the following:

Theorem 5.4. P, I [?dom(P,)] " is unitarily equivalent td®, (e =0, ..., 3).

Proof:  SinceP, +1i is a bijection from don®,) to H, the operator [P, +
D ["H is a bijection to {domP,)] . Supposé&, n € “domP,) andP,& ~
*Pyn. Then,*P,é = E *P,& ~ EP,¢ = P,& =~ *P,n because for alt € "X,
Py¢ ~*p¢. Thus we havet ~ n and henceé = n. It follows that [(P, +
i~ ”’H—(P +) IR = (B i)t | TH. Thus,*P,£ =7 if only
if PE=17forge 7dom(p) andn € °H. Therefore the unitary magy — *w
(¢ € H) transformsP, to P, | [7dom@P,)]”~. O
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Theorem 5.5. oapPo, ..., P|_1;”F7v-{) coincides with the joint spectrum of
Po, ..., P_1.

Proof: By Theorem 3.10. O

Theorem 5.6. For any Garding—Wightman Hermitian scalar field theof#t, ¢,
2, U), there exists a hyperfinite Hermitian scalar field the@ry<2’, P) such that
the standard parp(* f) 4o (f € S(R") is unitarily equivalent tap( f).

Conversely, we can get a Hermitian scalar field theory from a given hyperfinite
scalar field theory. Lety, €2, P) be a hyperfinite Hermitian scalar field theory.
Let H = (AQ) *+. By HW1 and Corollary 3. 5, we can define a magfrom
S(R'") to the symmetric operators dhby ¢(f) = (p(* f) 4q- Then GW1(a) follows
from HW3. The Lorenz invariance of the Wightman functions follows from HW4.
Hence, a strongly continuous unitary representatioof the PJI onH satisfying
GW?2 is constructed in a similar way as that in the construction occurring in the
proof of the Wightman reconstruction theorem (Bogoluktal,, 1975; Streater
and Wightman, 1964). Sindé (a, 1) = (€3"Pe) | H = €3"Pu| H, the generators
of translations aré’ =P, | H Ndom@,). By Theorem 3.10, the joint spectrum
of Py, ...,Pi_1isa subset of the closed forward light cone.

Theorem 5.7. For any hyperfinite Hermitian scalar field theory, its standardiza-
tion defined above gives ad@&ling—Wightman Hermitian scalar field theory.

Any mathematically nontrivial @'ding—Wightman quantum field, where
[¢(f), ()] # 0 for some f and g, cannot be represented a$f) = [ ¢(x)
f (x)dx with pointwise-defined operat@r(x). (Note that the meaning of “math-
ematically nontrivial field” is weaker than the ordinary use of “nontrivial field.”)
However, in the nonstandard field theapgx) can be a well-defined operator; in
fact, we shall see in the following example, that there exists a hyperfinite Hermitian
scalar field theoryd, 2, P) whose standardization is the standard Klein—Gordon
field theory that satisfies thea@ding—Wightman axioms, and there exists an inter-
nal field operatop(x) well-defined for each nonstandard space-time poiatR!'
such that

o(f)= */ f(X)g((x)dx, f e*SR". (36)

It is expected that for any &d8ing—Wightman field theory there is a nonstandard
field operatory defined for each nonstandard space—time point whose smeared
operatory( f) defined by (36) satisfy the hyperfinite Wightman axioms. However
this has not been proved.
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Example Fhyperfinite Klein—Gordon field). Let( Dy, Dx) be the represen-
tation of the CCR in Example 4 with = 1. SetJ = R® := {—Neg, (-N +
1)er, ..., Ner}® whereN € *Nu, ex € R{ andNeg € *Ry.. Forp € R3, let
a(p) = a(fp) where f,(q) := 8pq. We seea(f) = ZPERS f(p)a(p). Forx € *R
definep(x) by

o(x) = /med Z w, Y ?[ePXa(p)* + P a(p)] (37)
peR3
wherewp 1= /||p||2 + M2 and p = (wp, p). For f € *S(R*), definep(f) by
o(0) =" [ o0t dx (38)
We see
o(f) = /med Z | f(pap)* + f(—pap)] (39)
peR3

where f is the internal Fourier transform df.
Note the following fact:
Lemmab5.8. Forany he S(R"),

e Y *h(x) ~ f “h(x) dx. (40)

XeRN R

Using this Lemma, we have the following.

Theorem 5.9 (four-dimensional commutation relatian)For any & € Dy, and
f,g € °S(R%,

1
oD 0@l ~ 7 [ [ antx-nteoamdxaye, @
R4 JR4
whereA(x) is the Pauli-Jordan function defined by

e
M) = gy 17~ @71 5E. @2

Proof: Notice the equation

= . o d
/ / Am(X —y) f(X)g(y) dx dy=m/f(—p)g(p)—f(p)g(—p)—p.
R4 JR4 a)p

(43)
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We see

ey E

p,geR3 Wpw

[a(p)f( p), a(@)d(—a)lé =0

wed Y il ® f(p), a@§(-a))e =mweir Y —f(p)g( p)&

p.geR? per3 @p

etc. Thus, by Lemma 5.8, we have

[o(f), 0(@)E = ek Y wp L (—=pYG(P) + F(P)a(—P)IE

peR3

1
~ [i— /RfR Am(x—y)f(x)g(y)dxdy]s 0

Corollary (microscopic causality) Let f, g € °S(R?*). If supg andsupm are
space-like separated,

leo(f), 9(9)l€ ~ 0 (44)

forany& € Dy.

Theorem 5.10(two-point Wightman function)

wf,0):= (@, 0(No@2) ~ 5 [ [ alPx-y)100) dx dy, @)
where

AP (x) =

/ e*‘px@. (46)

@p

2(27)
Proof: Notice the equation
i dp

/ f AP — y) F()g(y) dx dy= i / fepam®. @)
R4 JR4 a)p

By Lemma 5.8, we have

(Q, (@) = ek Y w0, f(—p)d(p)

peR3

%} )y _
ifRA/RAm (x—y)f()g(y) dx dy O
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Theorem 5.11(n-point Wightman function) If n e Nand f, fa, ..., € °S(R%),
Won-1(f1, ..., fana) = (R, (1) - o(fan-1)R) ~ 0,
Won(f1, ..., fon) 1= (2, o(f1) - @(f2n) )
~ Z WZ( fili fjl) T WZ( fil! le) (48)

comb

where }" ., denotes the sum ovat, ji, ..., in, jo such that I<iy < jy <
2nkk=1,....,n),i1< - <ipik# Kkl =1...,n).

Proof: By the calculations similar to the case of the standard field operators,
using (45). O

Theorem 5.12. Let.As be the algebra generated iy, o(* f) | f € S(R%). Let

D = AsQ. Then the standardized fiedd(-) defined byp(f) = ¢(* f)p is unitary
equivalent to the standard Klein—Gordon field operator (Reed and Simon, 1975),
which satisfies the &ding—Wightman axioms.

Proof: By Theorem 5.10 and 5.11, the Wightman functions of the standardized
field ¢ coincides with those of the standard Klein—Gordon field theory. Thus, by
the Wightman reconstruction theorem, the proof is completed.

Let N(p) = a(p)*a(p), Po = >_pers @pN(p) and Py = 3. a Pu N(p) for
=123

Theorem 5.13. (¢, Q, (P, ..., Ps)) satisfies the hyperfinite Wightman axioms.

Proof: HW1 is seen fromds C A (A is defined in Example 4). HW?2 is clear.
HWS3 is seen from the S-continuity of the CCR representaiomg,, D). HW4
follows from Theorem 5.11. To see HWS5, check

eia” P a(p) e—a” P e—ia” P a(p)' (49)
and we get
e Prp(x) e P = p(x — a). (50)
Therefore, we see that HW5 is satisfied. We also find

PP, = p“p,N(p) =D _ m*N(p) = 0. (51)
p p
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Therefore HWG is satisfied. HW?7 follows from Corollary of Theorem 5.9. HW8
is seen fromPps = 0iff E =cQ. O
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