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A nonstandard approach to axiomatic quantum field theory is given. Nonstandard axioms
for a Hermitian scalar field is proposed, where the field operators act on a hyperfinite-
dimensional Hilbert space. The axioms are shown to be equivalent to the G˚arding–
Wightman axioms. An example of a model of the nonstandard axioms is examined.
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1. INTRODUCTION

Axiomatic quantum field theory began with the G˚arding–Wightman axioms
(Gårding and Wightman, 1964; Reed and Simon, 1975), which are written in terms
of field operators in a Hilbert space. The G˚arding–Wightman axioms are reformu-
lated as the Wightman axioms (Streater and Wightman, 1964) in terms of tempered
distributions, and then Euclideanized by Osterwalder and Schrader (1973). The
aim of this paper is to give another reformulation of the G˚arding–Wightman ax-
ioms in terms of the operators on ahyperfinite-dimensional linear space, which
is constructed innonstandard analysis, originated by Robinson (1966). This re-
formulation uses our recent mathematical results on nonstandard linear operators
(Yamashita and Ozawa, 2001).

Kelemen and Robinson (1972), who suggested a nonstandard method of con-
structing theλ : φ4

2(x) : model, claimed the need of the nonstandard axioms of
quantum field theory. However, the subject has not been studied after Kelemen
and Robinson, while several authors (e.g., Albeverioet al., 1986; Gudder, 1994;
Nakamura, 1991, 1997; Ojima and Ozawa, 1993; Ozawa, 1997; Yamashita, 1998;
Yamashita and Ozawa, 2000) have attempted to apply nonstandard analysis to
quantum physics.
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We first give some mathematical preliminary notions; thestandard partof an
internal bounded operator and thenonstandard representationsof the canonical
commutation relation (CCR). In this paper, we shall treat the CCR as relations sat-
isfied by unbounded operators, called creation and annihilation operators, so that
our treatment can be adjusted to the G˚arding–Wightman axioms for scalar fields
in which unbounded operators are employed. Nonstandard representations of the
CCR in terms of bounded operators (the CCR of the Weyl form) were examined
by Yamashita and Ozawa (2000).

In Section 5, the nonstandard axioms for neutral scalar fields are given, and
proven to be equivalent to the G˚arding–Wightman axioms. Then, we give an ex-
ample of a free field satisfying the axioms, using the nonstandard representations
of the CCR mentioned above.

Other quantum fields, especially gauge fields, will be studied in the subsequent
papers.

2. NONSTANDARD ANALYSIS

We follow the superstructure approach to nonstandard analysis (Chang and
Keisler, 1990; Hurd and Loeb, 1985). Their basic definitions were reviewed in
Yamashita and Ozawa (2000).

Instead of∗, we let? denote the ordinary star-map in nonstandard analysis.
For a setS, let σS= {?s | s ∈ S}. We identify ?z with z for all z ∈ C, i.e., we
assume the base set of the standard superstructure containsC. SoσS= S if S is a
subset ofC, e.g.,σC = C, σR = R, σZ = Z, andσN = N. LetR+, ?R0, ?R+0 , ?R+∞
and ?N∞ denote the set of positive real numbers, infinitesimal?-real numbers,
positive infinitesimal?-real numbers, positive infinite?-real numbers and infinite
?-natural numbers respectively. It is shown that?N∞ = ?N\N. We writex > ∞
if x ∈ R+∞, andx < ∞ if x ∈ fin ?R+ = ?R+\?R+∞. If r ∈ ?R and|r | < ∞, ◦r (or
st(r )) denotes the standard part ofr . If r > ∞, we write◦r = ∞.

Let x, y ∈ ?R+. We sayx is of the order of y, x ³ y, iff x/y < ∞ and
y/x < ∞. We writex ¿ y if x/y ≈ 0.

For a hyperfinite (?-finite) setF , let |F | denote the internal cardinal number
of F (|F | ∈ ?N).

Let (X,O) be a topological space, andOx the system of open neighborhood
of x ∈ X. Themonadof x ∈ X is the subset monO(x) =⋂ ?O(O ∈ Ox) of ?X.
The set ofnear standardpoints is the set ns(?X) =⋃monO(x)(x ∈ X). It is
shown that (X,O) is Hausdorff iffx 6= y⇒ monO(x) ∩monO(y) = φ. Thus for
the Hausdorff space (X,O), we can define the equivalence relationO≈ on ns?X
by a O≈ b iff for somex ∈ X a ∈ monO(x) andb ∈ monO(x).

Let (X, ‖·‖) be an internal normed linear space. Define the relation≈ on
?X by x ≈ y iff ‖x − y‖ ≈ 0. Theprincipal galaxyof ?X is the set fin(?X) =
{x ∈ ?X | ‖x‖ < ∞}. Let X̂ denote the equivalence classes of fin(?X) under
the equivalence relation≈. For x ∈ fin(X), let x̂ be the equivalence class
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x̂ = {y ∈ ?X | x ≈ y}. Clearly X̂ = {x̂ | x ∈ fin(?X)}. Define the norm‖·‖ on X̂
by ‖x̂‖ = ◦‖x‖ (well-defined). The pair(̂X, ‖·‖) turns out to be a Banach space,
called thestandardizationof (X, ‖·‖), in a κ-saturated model withκ > ℵ0. In a
similar way, the standardization is defined for an internal pre-Hilbert space (X, 〈,〉),
and it becomes a Hilbert space.

For a (standard) normed linear space (X, ‖·‖), we abbreviatê?X to X̂. In this
case, the Banach space (X̂, ‖·‖) is called thenonstandard hullof (X, ‖·‖).

Let X be an internal normed linear space, andS⊆ X. Define S̃⊆ X by
S̃= {ξ ∈ X | for anyε ∈ R+, there isη ∈ Ssuch that‖ξ − η‖ < ε}. If S⊆ fin(X),
we findS̃= ∪ ¯̂S= {ξ ∈ X | ξ̂ ∈ ¯̂S}. In this paper, an external setS⊂ finX is called
closedif S= ∪S′ for some closed setS′ ⊂ X̂.

LetH be an internal Hilbert space, andT : H→ H be an internal bounded
operator such that the bound‖T‖ is finite (such operator is calledS-bounded).
Define the bounded operatorT̂ : Ĥ→ Ĥ, called thestandard partof T , by T̂ x̂ =
T̂ x (well-defined).

In the following, we assume the polysaturation (Stroyan and Luxemburg,
1976), i.e., our nonstandard model isκ-saturated with card(X ) ≤ κ whereX is
the superstructure that is the domain of the map?.

3. STANDARDIZATIONS OF INTERNAL OPERATORS

This section outlines our recent mathematical results (Yamashita and Ozawa,
2001) on standardizing internal linear operators.

In nonstandard analysis,standardizationsof internal (or nonstandard) objects
have been studied for constructing standard mathematical objects; e.g., an internal
measure space is converted into a measure space in the standard sense, called Loeb
space (Albeverioet al., 1986). The standardization of an internal Hilbert spaceH
is the nonstandard hull̂H ofH (Moore, 1976). The standardization of an internal
operatorA onH with finite norm is the standard part̂A of A.

On the other hand, in the case where the norm ofA is not finite, it is not
straightforward to give an adequate definition of the standard part ofA. Albeverio
et al.(1986) definedÂ only whenH is hyperfinite-dimensional real Hilbert space
andA is an internal positive symmetric operator onH.

In this section, we give a definition of̂A for any internal complex Hilbert
spaceH and for any internal bounded operatorA on H, as well as the basic
properties onÂ so defined, which suggests the adequacy of the definition. For
further information, we refer to Yamashita and Ozawa (2001).

The following proposition enables us to give the first definition of the standard
part of A.

Proposition 3.1. There exists the unique (possibly unbounded) self-adjoint op-
erator S onK̂ satisfying

(S+ i )−1 = [( A+ i )−1]̂¹ K̂. (1)
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Definition 3.1. Under the condition of Proposition 3.1, define the self-adjoint
operator st1(A) on K̂ by (st1(A)+ i )−1 = [( A+ i )−1]̂¹ K̂.

The operator st1(A) is called thestandard partof A. We see that st1(A) = Â
whenA is S-bounded.

Definition 3.2. Let A be an internal bounded operator onH, an internal Hilbert
space. Define fin(A) ⊆ H by

fin(A) = {ξ ∈ finH | Aξ ∈ finH}. (2)

Definition 3.3. Let A be an internal bounded self-adjoint operator onH. Let
K̂ be the closure of the subspace [fin(A)]̂ = {ξ̂ | ξ ∈ fin(A)} of Ĥ. Define the
self-adjoint operator st2(A) on K̂ by

eit st2(A) = êitA ¹ K̂ t ∈ R. (3)

We see that{êitA ¹ K̂}t∈R is a one-parameter unitary group, sinceK̂ is invariant
underêitA for all t ∈ R. We also see that it is strongly continuous, as follows. Let
ξ ∈ fin(A). Then, we have‖(?d/dt)eitAξ‖ = ‖ieitA Aξ‖ < ∞, where?d/dt is the
internal differentiation. This implies that̂eitA ξ̂ is continuous with respect tot ∈ R.
Thus,êitA is strongly continuous on fin(A)̂⊥⊥. Hence by Stone’s theorem, st2(A)
is uniquely defined. If A is S-bounded, st2(A) coincides withÂdefined in Section 2.

Let E(·) be an internal projection-valued measure on?R, i.e., for each internal
Borel setÄ ⊆ ?R, E(Ä) is an orthogonal projection onH such that

1. E(φ) = 0, E(?R) = I
2. If Ä =⋃?∞

n=1Än with Än ∩Äm = φ if n 6= m, thenE(Ä) = s-limN→?∞∑N
n=1 E(Än)

3. E(Ä1)E(Ä2) = E(Ä1 ∩Ä2).

For r ∈ ?R, letHr = Rng(E(−r, r )), the range ofE((−r, r )). Let D(E) =⋃
r∈R+ Hr ∩ finH. D(E) is called thestandardization domainof E(·). Clearly,

D̂(E)
⊥⊥ = (

⋃
r∈R+ Ĥr )⊥⊥.

Fora ∈ R, define the orthogonal projection̂Est(−∞, a] by

Êst(−∞, a] = sup{Ê(−K , a+ ε]¹ D̂(E)⊥⊥ | K , ε ∈ R+} (4)

= s-lim
n→∞ Ê

(
−n, a+ 1

n

]
¹ D̂(E)⊥⊥. (5)

Then we see

s-lim
a→−∞ Êst(−∞, a] = 0 (6)
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s-lim
ε↓0

Êst(−∞, a+ ε] = Êst (−∞, a] (7)

a < b⇒ Êst (−∞, a] ≤ Êst (−∞, b] . (8)

Hence,Êst (−∞, ·] defines a projection-valued measure onR.

Definition 3.4. For any internal bounded self-adjoint operatorA, define the self-
adjoint operator st3(A) on D̂(E)⊥⊥ by

st3(A) =
∫
λdÊst(λ). (9)

Proposition 3.2. Let A be an internal bounded self-adjoint operator, and E(·)
the internal projection-valued measure associated with the spectral decomposition
of A. Then

D̂(E)⊥⊥ = ̂fin(A)
⊥⊥
. (10)

Theorem 3.3. Definition 3.1, 3.3, and 3.4 are equivalent, i.e.,st1(A) = st2(A) =
st3(A).

In Section 2,Â is defined only whenA is an internal S-bounded self-adjoint
operator. Now we can extend the definition so as to include the case whereA is
an internal bounded self-adjoint operator that is not S-bounded;Â := st1(A) =
st2(A) = st3(A).

Definition 3.5. Let Abe an internal linear operator on an internal Hilbert spaceH.
Let D be an (external) subspace of finH. A is standardizableon D if D ⊂ fin(A)
and if for anyx, y ∈ D, x ≈ y implies Ax ≈ Ay. In this case, define the operator
ÂD with domainD̂ = {x̂ | x ∈ D}, called thestandard partof A on D, by

ÂD x̂ = Âx, x ∈ D. (11)

Clearly, A is standardizable onD if and only if D ⊂ fin(A), and if Aξ ≈ 0
for all ξ ∈ D with ξ ≈ 0.

Lemma 3.4. An internal bounded operator A is standardizable onfin(A∗A).

Corollary 3.5. If D ⊆ finH is invariant under A and A∗, A is standardizable
on D.

Theorem 3.6. Let A be an internal self-adjoint operator onH, and E(·) the
projector-valued spectral measure of A. Then,

Â = ÂD(E) = Âfin(A2) (12)
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For a usual (resp. internal) closed operatorA, letσ (A) andσp(A) denote the
usual (resp. internal) spectrum and the usual (resp. internal) point spectrum ofA,
respectively.

Theorem 3.7. For an internal self-adjoint operator A,

σ (Â) = σp(Â) = st[σ (A) ∩ fin ?R]. (13)

Definition 3.6. Let A be an internal bounded self-adjoint operator onH.
Let H be a subspace of finH. A real numberλ is a approximate eigenvalueof
A relative to H, if for any internal setS⊃ H , there isξ ∈ S with ‖ξ‖ = 1 such
that (A− λ)ξ ≈ 0.

We denote byσapp(A; H ) the set of approximate eigenvectors ofA relative
to H .

Let st the standardizing operation onH, i.e., st(ξ ) = ξ̂ . We easily seeH ⊂
st−1(Ĥ ).

Theorem 3.8. λ ∈ σapp(A; H ) if and only if there exists a sequence{ξi }i∈N ⊂ H
with ‖ξi ‖ = 1 such thatlim i→∞ ◦‖(A− λ)ξi ‖ = 0.

Corollary 3.9. Let A be an internal bounded self-adjoint operator. Let H⊂ finH
be a subspace such thatĤ is closed and H= st−1(Ĥ ). Denote byÂ(Ĥ ) the self-

adjoint operator onĤ
⊥⊥

defined byÂ(Ĥ ) = Â | Ĥ ∩ dom(Â). Then,

σ (Â(Ĥ )) = σapp(A; H ). (14)

Definition 3.7. Let A andB be usual possibly unbounded self-adjoint operators
on a (usual) Hilbert spaceH. The operatorsA and B commuteif eisA andeitB

commute for each realt .

It is known thatA andB commute iff any spectral projection ofA commute
with any spectral projection ofB.

Definition 3.8. Let A andB be internal bounded self-adjoint operators onH, and
H a subspace of finH. The operatorsA andB areapproximately commuteon H if

eisA eitBξ ≈ eitB eitAξ (15)

for all ξ ∈ H ands, t ∈ R.

Definition 3.9. Let A1, . . . , An (n ∈ N) be internal bounded self-adjoint opera-
tors, andH a subspace of finH. Defineσapp(A1, . . . , An; H ) ⊆ R to be the set
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of λ ∈ R such that for any internal setS⊃ H , there isξ ∈ S such that‖ξ‖ = 1
and Ai ξ ≈ λi ξ (i = 1, . . . , n). Each element ofσapp(A1, . . . , An; H ) is called an
approximate joint eigenvalueof A1, . . . , An on H .

Theorem 3.10. Let A1, . . . , An (n ∈ N) be internal bounded self-adjoint oper-
ators onH, approximately commuting on H⊂ finH. Suppose that H is S-closed
and Ĥ is invariant under eachÂi . Then, the self-adjoint operatorŝA1¹ Ĥ ∩
dom(Â1), . . . , Ân ¹ Ĥ ∩ dom(Ân) commute, andσapp(A1, . . . , An; H ) coincides
with their joint spectrum.

4. NONSTANDARD REPRESENTATIONS OF THE CCR

Definition 4.1. Let H be an internal Hilbert space, andK be an internal inner
product space. Leta(·) be an internal map fromK to the internal bounded operators
onH. Let DH and DK be subspaces of finH and finK respectively. The triple
(a(·), DH, DK) is called a (nonstandard) representation of the CCR if

(i) f 7→ a( f )∗ is linear.
(ii) [ a( f ), a(g)∗]ξ ≈ 〈 f, g〉ξ, [a( f ), a(g)] = 0 f, g ∈ DK, ξ ∈ DH

(iii) DH is invariant undera( f ) anda( f )∗ for all f ∈ DK.

Definition 4.2. Let (a(·), DH, DK) be a representation of the CCR such that if
f, g ∈ DK and‖ f − g‖ ≈ 0 thena( f )ξ ≈ a(g)ξ , a( f )∗ξ ≈ a(g)∗ξ for all ξ ∈
DH. The representation (a(·), DH, DK) is calledS-continuous. Define the maps
â(·) and â†(·) from D̂K = { f̂ | f ∈ DK} to the operators on the inner product
spaceD̂H = {ξ̂ | ξ ∈ DH} by

â( f̂ )ξ̂ = (a( f )ξ )̂ , â†( f̂ )ξ̂ = (a( f ∗)ξ )̂ , ξ ∈ DH, f ∈ DK. (16)

We see that these are well-defined by the following: Condition (iii) implies
DH ⊆ fin(a( f )∗a( f )) ∩ fin(a( f )a( f )∗) for all f ∈ DK. Thus by Lemma 3.4,
a( f ) and a( f )∗ are standardizable onDH, i.e., if ξ, ζ ∈ DH and ξ ≈ ζ then
a( f )ξ ≈ a( f )ζ anda( f )∗ξ ≈ a( f )∗ζ . The operatorŝa(·) and â†(·) give a stan-
dard representation of the CCR:

[â( f̂ ), â(ĝ)] = 0, [â( f̂ ), â†(ĝ)] = 〈 f̂ , ĝ〉 ≡ ◦〈 f, g〉 (17)

Consider the case whereK = ?C, DK = fin?C andH is an hyperfinite-
dimensional internal Hilbert space.

Example 1(number truncation). LetH be a (standard) separable Hilbert space.
Let A and A† be the annihilation and the creation operators onH : let {ei }i∈N

denote a complete orthonormal system ofH , andD ⊂ H be spanned by{ei }i . The
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operatorsA andA† are defined by

Ae0 = 0, Aei =
√

iei−1, A†ei =
√

i + 1ei+1. (18)

Let {ψi }i∈ ?N = ?({ei }i∈N) whereψi = ?ei for i ∈ N, andH be the internal
Hilbert space spanned byψ0, . . . , ψν (ν ∈ ?N∞). Define the internal operatorsa
anda∗ onH by projecting the operatorsA andA∗:

aψ0 = 0, aψi =
√

i εi−1, i = 1, . . . , ν, (19)

a∗ψi =
√

i + 1εi+1, i = 1, . . . , i − 1, (20)

a∗ψν = 0. (21)

The operatorsa anda∗ are called thenumber-truncated annihilation operator
andnumber-truncated creation operator.

Let a(z) = z̄a for z ∈ K = ?C. Let DH = σ D and DK = fin?C. We see
(a(·), DH, DK) is a S-continuous representation of the CCR. Thenumber operator
N satisfying

eitNa e−itN = e−ita, t ∈ ?R, (22)

and

Nξ = 0 if and only if aξ = 0 (23)

is given byN = a∗a.

Example 2(hyperfinite extension). LetH and A be same as Example 1. LetF
be an internal hyperfinite-dimensional linear space withσ H ⊂ F ⊂ ?H , and the
operatora on F be a hyperfinite extension ofA. SetDH = σ D andDK = fin?C.
Definea(·) by a(z) = z̄a (z ∈ fin?C). Then, (a(·), DH, DK) is an S-continuous
representation of the CCR.

Example 3(spin matrices). LetJ1, J2, and J3 be the hermitian generators of
ν-dimensional internal irreducible representation of su(2) with the representation
spaceH, satisfying

[ Jk, Jl ] = i εklmJm. (24)

Let a = (J1+ J2)/
√

j with j = (ν − 1)/2, anda(z) = z̄a for z ∈ K = ?C.
Let Ä ∈ H satisfy ‖Ä‖ = 1 and aÄ = 0. Let DH be spanned byÄ and
a∗kÄ (k ∈ N), andDK = fin?C. Then, (a(·), DH, DK) is a S-continuous represen-
tation of the CCR. The number operatorN satisfying (22) and (23) is given byN =
J3+ j . Note thatN 6= a∗a in this example. Instead we haveN = ( j/2)[a, a∗] + j
anda∗a = N(1− N/ν).

Now we will consider a case whereK is infinite-dimensional.
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Example 4(number truncation for the case of infinite degree of freedom). Let
J be a hyperfinite set with|J| ∈ ?N∞. Let K = ?CJ with the inner product
〈 f, g〉 = ε∑i∈J f (i )g(i ) ( f, g ∈ ?CJ), whereε ∈ ?R is a fixed constant. Leta
be the number-truncated annihilation operator onH0. Let H = ⊗ j∈J H0 and
ai = ⊗ j∈J ai j , whereai j = a if i = j , andai j = 1 otherwise. Forf ∈ ?CJ , define
a( f ) by

a( f ) = √ε
∑
i∈J

f (i )ai . (25)

LetA be the (external)∗-algebra generated by{1, a( f ) | f ∈ fin?CJ}, and set
Ä = ⊗ j∈J ψ0, DH = AÄ andDK = fin?CJ . Then, we find that (a(·), DH, DK) is
a representation of the CCR. Condition (i) of Definition 4.1 is clear. Condition (ii) is
shown as follows. Note that [ai , a∗j ]a

∗
i1
· · · a∗inÄ = δi j a∗i1 · · · a∗inÄ (n ∈ N). Hence,

we have e.g.,ai1a
∗
i2

a∗i3Ä = (δi1i3+ δi1i2a
∗
i3

)Ä. Thus, every vector inDH = AÄ
is an internal linear combination of the vectors of the forma∗i1 · · · a∗inÄ. Thus,
[ai , a∗j ]ξ = δi j ξ for all ξ ∈ DH, and hence [a( f ), a(g)∗]ξ = ε∑i , j∈J f (i )g( j )
[ai , a∗j ]ξ =

∑
i∈J f (i )g(i )ξ = 〈 f, g〉ξ . Therefore (ii) is satisfied. Condition (iii)

is shown as follows. Clearly,DH is invariant underA. Let a( f )] denotea( f )
or a( f )∗. By a straightforward calculation, we can check〈Ä, a( f1)] · · · a( f1)]Ä〉
( f1, . . . , fn ∈ fin?CJ , n ∈ N) is finite. HenceDH ⊆ finH. Thus (iii) is satisfied.

The representation (a(·), DH, DK) also is S-continuous. In fact, if‖ f ‖ ≈
0, ‖ f ‖ 6= 0 andξ ∈ DH, thena( f )]ξ = ‖ f ‖a( f/‖ f ‖)]ξ ≈ 0, becasuef/‖ f ‖ ∈
DK anda( f/‖ f ‖)]ξ ∈ DH ⊆ finH. So we can consider the standardization of the
representation as stated after Definition 4.2: for any vectorξ̂ in the nonseparable
Hilbert spaceD̂K = (?CJ )̂ , â( f̂ ) andâ†( f̂ ) becomes standard operators defined
on D̂H. Let Â be the algebra generated by{1, â( f̂ ), â†( f̂ ) | f̂ ∈ D̂K}. We see
D̂H = ÂÄ̂, i.e., this representation is cyclic.

5. HYPERFINITE WIGHTMAN AXIOMS

LetS(Rl ) (l ∈ N) denote the space of the functions of rapid decrease with the
usual topology. SinceS(Rl ) is Hausdorff, we can define the equivalence relationS≈ by

f
S≈ g if and only if f − g ∈ monS (0). (26)

Definition 5.1. The triple (ϕ,Ä, P) of an internal linear mapϕ from ?S(Rl )
to the internal operators on an internal hyperfinite-dimensional Hilbert space
F , and a unit vectorÄ ∈ F , and internal self-adjoint operatorsP = (P0, . . . ,
Pl−1), is called a hyperfinite Hermitian scalar field theory if it satisfies the
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following properties:
LetA be the algebra generated by{I , ϕ( f ) | f ∈ σS(Rl )}.

(HW1)AÄ ⊆ finF .
(HW2) If f is real-valued thenϕ( f ) is self-adjoint.
(HW3) If F1, F2 ∈ ns?S(Rl ) andF1

S≈ F2, then

〈ξ1, ϕ(F1)ξ2〉 ≈ 〈ξ1, ϕ(F2)ξ2〉 ξ1, ξ2 ∈ AÄ. (27)

(HW4) For f1, . . . , fn ∈ σS(Rl ) and (a,3) ∈ P↑+ , the restricted Poincar´e group,

〈Ä, ϕ( f1) · · ·ϕ( fn)Ä〉 ≈ 〈Ä, ϕ( f1(a,3)) · · ·ϕ( fn(a,3))Ä〉, (28)

where f(a,3)(x) = f (3−1(x − a)).
(HW5)

(a) ÂÄ is invariant under (e−iaµPµ )̂ for all a ∈ Rl .
(b) For anya ∈ Rl , e−iaµPµÄ ≈ Ä.
(c) (eiaµPµ )̂ϕ̂AÄ( f )(e−iaµPµ )̂ξ̂ = ϕ̂AÄ( f(a,1))ξ̂ , ξ ∈ AÄ.

(HW6) P0, . . . , Pl−1 approximately commute onAÄ, andσapp(P; ÃÄ) is a subset
of the closed forward light cone.

(HW7) If the supports off andg are space-like separated,

[ϕ( f ), ϕ(g)]ξ ≈ 0 ξ ∈ AÄ, f, g ∈ σS(Rl ). (29)

(HW8) If e−iaµPµξ ≈ ξ for all a ∈ Rl , ξ ≈ cÄ (c ∈ C).

Let us call HW1–HW8 thehyperfinite Wightman axioms.

Definition 5.2(Gårding and Wightman, 1964; Streater and Wightman, 1964).
The quadruple (H,Ä, φ, U ) of a separable Hilbert spaceH, a mapφ from S(Rl )
to the operators onH, and a strongly continuous representationU of P↑+ onH, is
called aGårding–Wightman Hermitian scalar field theoryif it satisfies the follow-
ing properties:

(GW1) There exists a dense domainD0 ⊂ H satisfying the following (a)–(d):
(a) For eachf ∈ S(Rl ), dom(φ( f )) ⊆ D0, and for allξ1, ξ2 ∈ D0, the linear

functional〈ξ1, φ(·)ξ2〉 is a tempered distribution.
(b) If f ∈ S(Rl ) is real-valued,φ( f ) is symmetric onD0.
(c) For eachf ∈ S(Rl ), D0 is invariant underφ( f ).
(d) Ä ∈ D0 and D0 is algebraically spanned by{Ä, φ( f1) · · ·φ( fn)Ä | f1,

. . . , fn ∈ S(Rl ), n ∈ N}.
(GW2)

(a) For any (a,3) ∈ P↑+ , D0 is invariant underU (a,3).
(b) For any (a,3) ∈ P↑+ , U (a,3)Ä = Ä.
(c) For any f ∈ S(Rl ) and (a,3) ∈ P↑+ ,

U (a,3)φ( f )U (a,3)−1 = φ( f(a,3)). (30)
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(GW3) The joint spectrum of the infinitesimal generatorsP0, . . . , Pl−1 of the
subgroup{U (a, 1) | a ∈ Rl } is a subset of the closed forward cone.

(GW4) If the supports off andg are space-like separated, [φ( f ), φ(g)] = 0 onD0.
(GW5) A vector invariant under eachU (a, 1) (a ∈ Rl ) is a scalar multiple ofÄ.

We will show the equivalence of the G˚arding–Wightman axioms and the
hyperfinite Wightman axioms.

Let (H, φ,Ä, U ) be a Gårding–Wightman Hermitian scalar field theory. Let
F be an internal hyperfinite-dimensional Hilbert space such thatσH ⊂ F ⊂ ?H,
and E the orthogonal projection ontoF . Then,ϕ(·) = E?φ(·) ¹ F is an internal
linear map from?S(Rl ) to the internal operators onF . Let A be the∗-algebra
generated by{1,ϕ(? f ) | f ∈ S(Rl )}. SinceAÄ = σ D0 by GW1(d), HW1 holds. If
f ∈ S(Rl ) is real-valued,ϕ(? f ) is self-adjoint HW2. HW3 follows from GW1(a).
HW4 follows from GW2.

To show HW5, we need the following lemmas:

Lemma 5.1. Let m, n, l ∈ N. For any bounded operators T1, . . . , Tm, and posi-
tive realε, any vectorsψ1, . . . , ψn ∈ H and any real t1, . . . , tl , there is an orthog-
onal projection E of finite rank such that

||eitαETβEψγ − eitαTβψγ || < ε and Eψγ = ψγ (31)

for α = 1, . . . , l , β = 1, . . . , m, and γ = 1, . . . , n.

Proof: Let N ∈ N andEN be the projector onto the finite-dimensional subspace
spanned by{Tk

β ψγ | k = 0, . . . , N, β = 1, . . . , m, γ = 1, . . . , n}. We have

d(N)
αβγ := ||eitαEN TβENψγ − eitαTβψγ ||

=
∣∣∣∣∣
∣∣∣∣∣ ∞∑
k=N+1

(itαENTβEN)k

k!
ψγ −

∞∑
k=N+1

(itαTβ)k

k!
ψγ

∣∣∣∣∣
∣∣∣∣∣→ 0 (N →∞).

Thus, take a sufficiently largeN so that maxα,β,γd(N)
αβγ < ε, and letE = EN . ¤

Lemma 5.2. LetH be a Hilbert space, and Tk (k∈N) internal bounded opera-
tors on?H. There exists a hyperfinite-dimensional internal subspace F withσH ⊂
F ⊂ ?H such that for every k∈ N, every real t, and every vectorξ ∈ σH,

eitETk Eξ ≈ eitTkξ, (32)

where E is the internal orthogonal projection onto F.

Proof: By the Transfer Principle, Lemma 5.1 is transferred to: “for any
internal bounded operatorsT1, . . . , Tm, any positive hyperrealε, any vectors
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ψ1, . . . , ψn ∈ ?H and any hyperrealst1, . . . , tl , there is an internal orthogonal pro-
jection P of hyperfinite rank such that (31) holds.” Thus we find that the internal
relation

||eitPTk Pψ − eitTkψ || < ε and Pψ = ψ (33)

with the two variables (k, ψ, t, ε) and P is concurrent (Hurd and Loeb, 1985;
Stroyan and Luxemburg, 1976) onN× σH× R× R+. Thus, by the saturation,
the proof is completed. ¤

Lemma 5.3. Let A1, . . . , An (n ∈ N) be (possibly unbounded) commuting self-
adjoint operators onH, a Hilbert space. Then, there are internal bounded com-
muting self-adjoint operators B1, . . . , Bn on ?H such that

eit?Ai ?ξ ≈ eitBi ?ξ , i = 1, . . . , n, (34)

for anyξ ∈ H and t ∈ R.

Proof: Let P(·) be the internal projection-valued joint-spectral measure on?Rn

associated withA1, . . . , An. Let S be an internal bounded Borel set such that
fin ?Rn ⊂ S⊂ ?Rn, and setBi = P(S)Ai P(S). SinceP(S)?ξ ≈ ?ξ for anyξ ∈ H,
(34) holds. ¤

We apply Lemma 5.3 to the self-adjoint operatorsP0, . . . , Pl−1 onH, and
have internal commuting bounded self-adjoint operatorsP′0, . . . , P′3, satisfying
eitP′i ?ξ ≈ eit?Pi ?ξ (i = 1, . . . , 3) for anyt ∈ R andξ ∈ H. By Lemma 5.2, we can
assumeeitEP′i E?ξ ≈ eitP′i ?ξ for any t ∈ R andξ ∈ H. SetPi = EP′i ¹ K, and we
have

eitPi ?ξ ≈ eit?Pi ?ξ , ξ ∈ H, i = 0, . . . , l − 1. (35)

Thus, HW5(a)–(c) follows from GW2(a)–(c). The commutability ofP0, . . . , P3

and (35) imply that the approximate commutability ofP1, . . . , Pl−1 on σH. HW6
is shown by the following:

Theorem 5.4. P̂α ¹ [σdom(Pα)]̂ is unitarily equivalent toPα (α = 0, . . . , 3).

Proof: SincePα + i is a bijection from dom(Pα) to H, the operator [(?Pα +
i )−1]̂ ¹ σ̂H is a bijection to [σdom(Pα)]̂. Supposeξ, η ∈ σdom(Pα) andPαξ ≈
?Pαη. Then, ?Pαξ = E ?Pαξ ≈ EP′αξ = Pαξ ≈ ?Pαη because for allζ ∈ σH,
Pαζ ≈ ?pζ . Thus we haveξ ≈ η and henceξ = η. It follows that [(?Pα +
i )−1]̂¹ σ̂H = (Pα + i )−1̂ ¹ σ̂H = (P̂α + i )−1 ¹ σ̂H. Thus, ?Pαξ = η if only
if P̂ξ̂ = η̂ for ξ ∈ σdom(p) andη ∈ σH. Therefore, the unitary mapψ 7→ ?̂ψ

(ψ ∈ H) transformsPα to P̂α ¹ [σdom(Pα)]̂. ¤
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Theorem 5.5. σapp(P0, . . . , Pl−1; σ̃H) coincides with the joint spectrum of
P0, . . . , Pl−1.

Proof: By Theorem 3.10. ¤

Theorem 5.6. For any G̊arding–Wightman Hermitian scalar field theory(H, φ,
Ä, U ), there exists a hyperfinite Hermitian scalar field theory(ϕ,Ä′, P) such that
the standard part̂ϕ(? f )AÄ ( f ∈ S(Rl )) is unitarily equivalent toφ( f ).

Conversely, we can get a Hermitian scalar field theory from a given hyperfinite
scalar field theory. Let (ϕ,Ä, P) be a hyperfinite Hermitian scalar field theory.
Let H = (AÄ)̂ ⊥⊥. By HW1 and Corollary 3.5, we can define a mapφ from
S(Rl ) to the symmetric operators onK byφ( f ) = ̂ϕ(? f )AÄ. Then GW1(a) follows
from HW3. The Lorenz invariance of the Wightman functions follows from HW4.
Hence, a strongly continuous unitary representationU of the P↑+ onH satisfying
GW2 is constructed in a similar way as that in the construction occurring in the
proof of the Wightman reconstruction theorem (Bogolubovet al., 1975; Streater
and Wightman, 1964). SinceU (a, 1)= (eiaµPµ )¹H = eiaµ P̂µ¹H, the generators
of translations arêP

′
α = P̂α¹H ∩ dom(P̂α). By Theorem 3.10, the joint spectrum

of P̂0, . . . , P̂l−1 is a subset of the closed forward light cone.

Theorem 5.7. For any hyperfinite Hermitian scalar field theory, its standardiza-
tion defined above gives a Gårding–Wightman Hermitian scalar field theory.

Any mathematically nontrivial G˚arding–Wightman quantum field, where
[φ( f ), φ(g)] 6= 0 for some f and g, cannot be represented asφ( f ) = ∫ φ(x)
f (x)dx with pointwise-defined operatorφ(x). (Note that the meaning of “math-
ematically nontrivial field” is weaker than the ordinary use of “nontrivial field.”)
However, in the nonstandard field theory,ϕ(x) can be a well-defined operator; in
fact, we shall see in the following example, that there exists a hyperfinite Hermitian
scalar field theory (ϕ,Ä, P) whose standardization is the standard Klein–Gordon
field theory that satisfies the G˚arding–Wightman axioms, and there exists an inter-
nal field operatorϕ(x) well-defined for each nonstandard space–time pointx ∈ ?Rl

such that

ϕ( f ) = ?

∫
f (x)ϕ(x) dx, f ∈ ?S(Rl ). (36)

It is expected that for any G˚arding–Wightman field theory there is a nonstandard
field operatorϕ defined for each nonstandard space–time point whose smeared
operatorϕ( f ) defined by (36) satisfy the hyperfinite Wightman axioms. However
this has not been proved.
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Example 5(hyperfinite Klein–Gordon field). Let (a, DH, DK) be the represen-
tation of the CCR in Example 4 withε = 1. Set J = R3 := {−NεR, (−N +
1)εR, . . . , NεR}3 whereN ∈ ?N∞, εR ∈ R+0 and NεR ∈ ?R∞. For p ∈ R3, let
a(p) = a( fp) where fp(q) := δpq. We seea( f ) =∑p∈R3 f (p)a(p). For x ∈ ?R
defineϕ(x) by

ϕ(x) =
√
πε3
R
∑

p∈R3

ω−1/2
p

[
e−i pµxµa(p)? + eipµxµa(p)

]
(37)

whereωp :=
√
||p||2+m2 and p = (ωp, p). For f ∈ ?S(R4), defineϕ( f ) by

ϕ( f ) = ?

∫
ϕ(x) f (x) dx. (38)

We see

ϕ( f ) =
√
πε3
R
∑

p∈R3

ω−1/2
p [ f̃ (p)a(p)∗ + f̃ (−p)a(p)] (39)

where f̃ is the internal Fourier transform off .

Note the following fact:

Lemma 5.8. For any h∈ S(Rn),

εn
R
∑
x∈Rn

?h(x) ≈
∫

Rn

h(x) dx. (40)

Using this Lemma, we have the following.

Theorem 5.9 (four-dimensional commutation relation). For any ξ ∈ DH and
f, g ∈ σS(R4),

[ϕ( f ), ϕ(g)]ξ ≈
[

1

i

∫
R4

∫
R4
1m(x − y) f (x)g(y) dx dy

]
ξ, (41)

where1m(x) is the Pauli–Jordan function defined by

1m(x) = i

2(2π )3

∫
[e−i px − eipx]

dp
ωp
. (42)

Proof: Notice the equation∫
R4

∫
R4
1m(x − y) f (x)g(y) dx dy= π i

∫
f̃ (−p)g̃(p)− f̃ (p)g̃(−p)

dp
ωp
.

(43)
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We see

πε3
R

∑
p,q∈R3

1√
ωpωq

[a(p) f̃ (−p), a(q)g̃(−q)]ξ = 0

πε3
R

∑
p,q∈R3

1√
ωpωq

[a∗(p) f̃ (p), a(q)g̃(−q)]ξ = πε3
R
∑

p∈R3

1

ωp
f̃ (p)g̃(−p)ξ

etc. Thus, by Lemma 5.8, we have

[ϕ( f ), ϕ(g)]ξ = πε3
R
∑

p∈R3

ω−1
p [ f̃ (−p)?g̃(p)+ f̃ (p)?g̃(−p)]ξ

≈
[

1

i

∫
R4

∫
R4
1m(x − y) f (x)g(y) dx dy

]
ξ ¤

Corollary (microscopic causality). Let f, g ∈ σS(R4). If suppf andsuppg are
space-like separated,

[ϕ( f ), ϕ(g)]ξ ≈ 0 (44)

for anyξ ∈ DH.

Theorem 5.10(two-point Wightman function).

w2( f, g) := 〈Ä, ϕ( f )ϕ(g)Ä〉 ≈ 1

i

∫
R4

∫
R4
1(+)

m (x − y) f (x)g(y) dx dy, (45)

where

1(+)
m (x) = i

2(2π )3

∫
e−i px dp

ωp
. (46)

Proof: Notice the equation∫
R4

∫
R4
1(+)

m (x − y) f (x)g(y) dx dy= π i
∫

f̃ (−p)g̃(p)
dp
ωp
. (47)

By Lemma 5.8, we have

〈Ä, ϕ( f )ϕ(g)Ä〉 = πε3
R
∑

p∈R3

ω−1
p f̃ (−p)g̃(p)

≈ 1

i

∫
R4

∫
R4
1(+)

m (x − y) f (x)g(y) dx dy ¤
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Theorem 5.11(n-point Wightman function). If n ∈ N and f1, f2, . . . , ∈ σS(R4),

w2n−1( f1, . . . , f2n−1) := 〈Ä, ϕ( f1) · · ·ϕ( f2n−1)Ä〉 ≈ 0,

w2n( f1, . . . , f2n) := 〈Ä, ϕ( f1) · · ·ϕ( f2n)Ä〉
≈
∑
comb

w2( fi1, f j1) · · ·w2( fi1, f j1) (48)

where
∑

comb denotes the sum overi1, j1, . . . , i n, jn such that 1≤ i k < j k ≤
2n (k = 1, . . . , n), i1 < · · · < i n, i k 6= jl (k, l = 1, . . . , n).

Proof: By the calculations similar to the case of the standard field operators,
using (45). ¤

Theorem 5.12. LetAS be the algebra generated by{1,ϕ(? f ) | f ∈ S(R4)}. Let
D = ASÄ. Then the standardized fieldφ(·) defined byφ( f ) = ̂ϕ(? f )D is unitary
equivalent to the standard Klein–Gordon field operator (Reed and Simon, 1975),
which satisfies the G̊arding–Wightman axioms.

Proof: By Theorem 5.10 and 5.11, the Wightman functions of the standardized
field φ coincides with those of the standard Klein–Gordon field theory. Thus, by
the Wightman reconstruction theorem, the proof is completed.¤

Let N(p) = a(p)∗a(p), P0 =
∑

p∈R3 ωpN(p) and Pα =
∑

p∈R3 PαN(p) for
α = 1, 2, 3.

Theorem 5.13. (ϕ,Ä, (P0, . . . , P3)) satisfies the hyperfinite Wightman axioms.

Proof: HW1 is seen fromAS ⊂ A (A is defined in Example 4). HW2 is clear.
HW3 is seen from the S-continuity of the CCR representation (a, DH, DK).HW4
follows from Theorem 5.11. To see HW5, check

eiaµPµa(p) e−aµPµ = e−iaµPµa(p), (49)

and we get

eiaµPµϕ(x) e−aµPµ = ϕ(x − a). (50)

Therefore, we see that HW5 is satisfied. We also find

PµPµ =
∑

p

pµpµN(p) =
∑

p

m2N(p) ≥ 0. (51)
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Therefore HW6 is satisfied. HW7 follows from Corollary of Theorem 5.9. HW8
is seen fromP0ξ = 0 iff ξ = cÄ. ¤
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